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Abstract-A rigid ellipsoidal inclusion is perfectly bonded to a surrounding piezoelectric medium
of infinite extent, and is translated infinitesimally by an externally imposed force. We show that the
resulting exterior fields are equivalent to those induced by a layer of body force and electric charge
applied over the ellipsoidal surface. Without having to solve the governing equations ofequilibrium,
we find directly the relation between the force and translation vectors, together with the stress,
strain, rotation tensor and electric fields just outside the inclusion. Gaussian double quadratures
with variable station points are employed in the numerical computations. Results are presented for
two piezoelectric ceramics, GaAs and PZT-6B, to show the effect of the aspect ratio of the spheroid
on the translational stiffness. This work extends the results of Walpole, L. J. (199Ib) Proc. R. Soc.
London A434, 571-585 to piezoelectric media.

1. INTRODUCTION

This work is a continuation ofmy earlier study of a rotated rigid inclusion in a piezoelectric
medium (Chen, 1993a), which will be referred to as (I) in the sequel. In that work I extended
Walpole's (1991a) approach and showed that the exterior fields ofa rotated rigid ellipsoidal
inclusion are equivalent to those induced by a layer of body force and electric charge
prescribed over the ellipsoidal surface in a homogeneous piezoelectric medium. In this study
I will further explore the approach in the translation of a rigid inclusion.

Piezoelectric materials, particularly piezoelectric ceramics, are an important class of
engineering materials, with wide applications in actuators and sensors in "smart" materials
and structures. An extensive review of the technological advantages offered by piezoelectrics
is given by Smith (1989). We consider a rigid ellipsoidal inclusion embedded in a homo­
geneous, arbitrarily anisotropic, piezoelectric matrix and translated infinitesimally by an
externally imposed force. The term "rigid" is defined in the sense that the elastic stiffness
and dielectric permittivity tend to infinity so that no elastic strain or electric field is present
in the inclusion. The general approach here is to let the homogeneous piezoelectric medium
extend throughout the whole space. A layer of body force and electric charge is introduced
over the ellipsoidal surface at a density such that the interior displacement and potential
are uniform, not accompanied by any strain, rotation, or electric field. The exterior elastic
and electric fields are then identical in all respects to those associated with the translated
rigid inclusion. Without having to solve either the governing equations of equilibrium in
the matrix or the fundamental one of a point force, we find directly the relation between
the force and translation vectors, together with the stress, strain, rotation, electric field and
electric displacementjust outside the inclusion. The results are expressed in a closed form and
evaluated numerically for arbitrary anisotropy of the medium and for arbitrary ellipticity of
the inclusion. Gaussian double quadratures with a variable number of integration points
are employed in the calculations. The computer routines have been checked with existing
analytic solutions for transversely isotropic and isotropic solids. As an illustration, we
present results for two piezoelectric ceramics, gallium arsenide and PZT-6B, to show the
effect of the aspect ratio of the spheroid on the translational stiffness. Much of the analysis
is relevant to the subject ofinterfacial discontinuities (Hill, 1983), together with the concept
of body force layers originally devised by Eshelby (1957) in dealing with the ellipsoidal
inclusion problem, and more recently by Walpole (1991a, b) for a rotated and translated
rigid inclusion in elastic media.
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Related subjects of piezoelectric inclusions and inhomogeneities have received con­
siderable attention lately, see for example Deeg (1980), Pak (1992), Wang (1992), Benveniste
(1992) and Chen (1993b). Available solutions ofa translated rigid inclusion in elastic media
could be found in the works by Kanwal and Sharma (1976), Selvadurai (1976, 1980, 1982)
and references therein. In particular, Kanwal and Sharma employed the technique of
combining and distributing suitable singularities to explore the displacement type boundary
value problems. Selvadurai used Hankel integral transforms and a complex potential func­
tion approach to investigate the asymmetric displacement of a rigid elliptical disc in a
transversely isotropic medium. Recent developments include a series of works by Pak and
Saphores (1991, 1992), in which they examined the rotation and translation of a rigid disc
in an elastic half-space by means of Hankel transforms.

Cartesian tensors will be used and their components will be written by the indicial
notation, with reference to the coordinates XI> X2, X3' Repeated indices indicate Einstein's
summation convention with the index running from 1-3. i is the unit second-rank tensor
fJij such that ~~-I = ~- l~ = i, provided that ~ is invertible.

2. BASIC EQUATIONS

The constitutive relation for a linear piezoelectric medium can be expressed as (Tiersten,
1969) :

{

(Jij = LijklBkl- ekijEb

D i = eiklBkl + KikEb
(1)

where (Jij is the stress tensor, Bkl the strain tensor, D i the electric displacement vector, and
E i the electric field. L ijkl are the elastic moduli measured in a constant electric field; Kij are
the dielectric permittivities measured at constant strain; eijk are the piezoelectric constants.
The material constants L, e, K are, respectively, fourth-rank, third-rank and second-rank
tensors, which satisfy the symmetry relations:

(2)

so that L ijkh eijk and Kij admit, at most, 21, 18 and 6 independent components, respectively.
If Ui(X) is the elastic displacement vector and cjJ(x) the electric potential, the infinitesimal
strain, rotation tensor and electric field are given by :

(3)

where the comma followed by an index indicates the derivative with respect to the cor­
responding space coordinate. In the absence of body forces and extrinsic charges the stress
and electric displacement satisfy the divergence equations:

(JijJ = 0, Di,i = 0, (4)

together with continuity of traction and normal components of electric displacement on
any interface.

Similar to that of elasticity, Green's functions in piezoelectric media can be defined as
(see for example, Minagawa, 1984):
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(5)

where 8ij is the Kronecker delta and 8(x - x') the Dirac delta function. gi~(X - x') and
gJ(x-x/) are, respectively, defined to be the elastic displacement in the i direction and
electric potential at x due to a point force applied at x' in the Xj direction; likewise g1 and
g4 are, respectively, the displacement in the i direction and electric potential at x due to a
point charge at x'. It is shown that, similar to that ofelasticity, the Green's functions follow
the elementary relations (Chen, 1993b):

gMx, x') = gMx, x') =gMx/, x), g4(X, x') = g4(X/, x),

g1(x, x') = g1(x/, x) = gl(x, x') = gJ(x/, x). (6)

Also, it may be quoted further that the Green's functions are even homogeneous functions
of the vector (x' - x) of degree minus one, namely:

gi~ = gi~(s)/Ix' -xl, g1 =gl(s)/lx' -xl, gj3 =g?(s)/Ix' -xl,

g4 = g4(s)/lx/-xl, Sj = (x;-xi)/Ix' -xl,

where gare even functions ofs only.

(7)

3. AN ELLIPSOIDAL LAYER OF BODY FORCE AND CHARGE

An unbounded volume of a homogeneous, anisotropic piezoelectric medium is loaded
by a layer of body force and charge over an internal, closed regular surface S. The origin
of the Cartesian coordinate is placed conveniently at any point inside the surface S. All
field variables satisfy the governing equations as described in Section 2. At the remote
boundary of the medium the strain and electric field are zero. On S a layer of body force
and electric charge is applied such that the discontinuity in the surface traction vector is
along a constant direction A j with a chosen variation of magnitude Xknb and the jump in
the normal component of electric displacement is a constant multiple of xini. That is, with
no body forces or external charges elsewhere, we specify:

(8)

at points on S, where the superscripts I and E refer to the interior and exterior parts of S,
respectively; n is the outward unit normal to S; A is a constant vector and B is a scalar to
be determined. Since there are no body forces or charges elsewhere, the equilibrium con·
ditions (4) are satisfied at points inside and outside S. The resulting displacement field and
electric potential are hence continuous across S and continuously differentiable elsewhere.
The interfacial jumps in the displacement gradient and electric field on both sides of Scan
be described from the Hadamard's geometric interpretation (Hill, 1961):

(9)

On substituting (9) into (1) with reference to (8) there results:
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(10)

(11)

The tensor ei and scalar h are some unknowns that could be determined as:

where

(12)

Substituting (12) into (9) and taking the symmetric and antisymmetric parts in (9 1), we
find the jump relations:

(13)

for the strain, rotation and electric fields at point of S.
Turning to (8), the full elastic and electric fields due to the layer of body force and

charge can be constructed from the reciprocal relations

(Jijgi~,j+Dig}"i = (Lijklgkp,l +ekijg}"k)UiJ+ (eiklgkp,l- Kik g}"k)¢,i'

(Jijgij +Digj = (Lijklgf,l +ekijg,k)Ui,j + (eiklgf,l- Kikg,D¢,i' (14)

Integrating (14) over the whole of space by the divergence theorem, recalling that the
displacement field and electric potential are continuous across S, and the jumps in the
traction and electric charge specified in (8), we can show that:

Up(x) = [L xjnjgi~(x,X/) dSJAi+ [L xjnjg},(x,x
/
) dSJB,

¢(x) = [L xjnjg?(x, x') dSJAi+ [L xjnj g
4(x, X') dSJB, (15)

where the integrations are extended over the closed surface S with respect to the primed
coordinates. The integrand can be simplified further by converting the integration into the
interior volume of S using the divergence theorem. For example, the integral of the first
term in (15) can be reduced to :
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where we have used the properties in (6) and the equivalent Euler's relation for the
piezoelectric medium:

Thus the displacement and electric potential fields can be expressed as:

Ui(X) = [I (2gi}-Xkgi},k) dX'JAj+ [I (2g?-Xkg(,k) dX']B,

4>(x) = [I (2g}-Xkg]k) dX']Aj+ [Iv (2g4-Xkg,n dX']B.

(17)

(18)

To further simplify the expressions (18), we consider a uniform distribution of body
force f and electric charge q acting on the whole region inside a closed regular surface S. The
resulting displacement and potential fields at x can be represented as linear combinations of
some coefficients:

Ui(X) = GMx)fi+Gf(x)q, 4>(x) = G?(x)j;+G 4(x)q. (19)

It was shown from the reciprocal relations (Chen, 1993a) that the functions G are related
to the Green's tensors g as :

GMx) = IgMx',X)dX', G4(x) = I g 4(X"X)dX"

Gf(x) = G?(x) = Igf(x"x) dx' = Ig?(x"X) dx',

Accordinglyeqn (18) can be recast as:

Uj(x) = (2Gj}-XkGi},k)Aj+(2G! -XkG&,k)B,

4>(x) = (2G}-XkG]k)Aj+(2G4_XkG.1)B,

(20)

(21)

To examine the function G in detail, we suppose the region V is an ellipsoid expressed
by tijX~X; = 1, in which t ij are symmetric, positive-definite constant coefficients, If x is
located inside the region V, we can deduce the integrals (20) in a simpler form. First the
volume element dx' can be expressed as:

dx' = r 2 dr dw, (22)

where r = lx' - xl and dw is a surface element of a unit sphere 1: centered at point x, Next
substituting x~ = Xi + rSi in (22) and (7), upon integration with respect to r we obtain:

(23)

where r(s) defines the boundary of the ellipsoid and is given by the positive root of the
equation:
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thus:

with
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(24)

(25)

Since the matrix in the integrand of (23) is even with respect to s while the radical part of
(25) is odd, their product will integrate to zero. Thus for x E V, functions G are simply
quadratic functions of the coordinates:

(26)

with the abbreviations:

(27)

A further examination of (27) brings out the connections:

(28)

where mij is the inverse of tij such that tikmkj = Oij' In deriving (28) we have employed the
identity:

(29)

which can be directly proven from the definition of (27 1),

In (I) it was shown that the coefficients K are the quotients of two surface integrals
over S:

Ki~k' = (fwkijnkn, dS)/ (fw dS) ,

Ki~' = Kl, = (fW~kiAnkn,dS)/ (fWdS),

K~ = (fW~ [~kmndmdn-l ]ninj dS)/(fWdS), (30)

where the weighting function w(x) is the perpendicular distance from the origin to the
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tangent plane of the ellipsoid at each point, namely w = x,n,. Hence from (28 2) it can be
readily shown that:

Ji}= (fw
3kij dS)!(fWdS), Jl = Jl = (fW3~kiAdS)!(fWdS),

J4 = (fW31 [1kmndmdn-l] ds)!(fWdS). (31)

Note we have employed the identity of w2
mjjnjnj at points of S.

Returning to the displacement and potential fields in the inclusion (21), by using (26)
it can be readily shown that they are reduced to the intended uniform displacement Uj and
to the uniform potential $

(32)

4. A TRANSLATED RIGID ELLIPSOIDAL INCLUSION

We have shown that by prescribing a layer of body force and electric charge (8) over
a closed, ellipsoidal surface inside an unbounded piezoelectric medium, the displacement
and electric potential are uniform inside the region V. Accordingly, the interior displace­
ment, electric potential and all exterior fields are equivalent in all respects to the con­
figuration that the interior ofS is filled by a rigid inclusion, which is translated infinitesimally
in the direction of Uj with constant electric potential $. The term "rigid" is defined here in
the sense that its stiffness and dielectric permittivity tend to infinity so that no elastic strain
or electric field is present in the inclusion.

Since the strain and electric field (and hence the stress and electric displacement) are
zero inside the ellipsoid, by referring to (8) the interfacial quantities exterior to S are:

(33)

The resultant force and electric charge imposed internally on the rigid inclusion by the
surrounding matrix can then be evaluated by the surface integration over S:

(34)

where a I, a2 and a3 are the semi-axes of the ellipsoidal surface. For convenience, we shall
rewrite the relation concisely as:

(35)

Since Jj} = J}i and Jl = Jl, the translation tensor T is also diagonally symmetric.
At points just outside S, the exterior fields of strain, rotation and electric field are

derived from (13), (32) and (35) as:
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(36)

We have now obtained the interfacial quantities just outside the inclusion. With these
boundary data one can evaluate the fields inside the matrix using boundary integral formulae
[I, eqns (44) and (46)]. In particular, the problem can be treated as an infinite piezoelectric
medium with an ellipsoidal cavity inside. On the surface of the cavity the stress, strain,
electric field and electric displacement are all known, while at its remote boundary the strain
and electric fields are vanishing. The numerical procedure generally calls for a discretization
of the boundary domain and the knowledge of the Green's functions. It is beyond the
present scope to discuss in detail the evaluation of the internal fields. For a detailed
exposition of this particular issue, the reader is referred to standard texts of boundary
element methods.

Also, it is of interest to note that the total electric enthalpy H in the whole of space 9f
can be derived as :

3 [J 1 J2J [AJ= 2V[A;, B] J} J~ ~' (37)

where V is the volume of the inclusion.
In the case of homogeneous boundary conditions applied at infinity, the solutions can

be obtained simply by superimposing a uniform field of strain and an electric field in the
medium as illustrated in (I) for the rotated rigid inclusion. However, in this case the resultant
couple of the inclusion will not vanish in general, and hence the inclusion acts as a translated
as well as a rotated rigid one. In principle, the solutions are linear combinations of the
results obtained in both works.

5. NUMERICAL RESULTS

As seen from the previous section it is obvious that the solutions rely on the evaluations
of the integrals (31). Unfortunately, for arbitrary anisotropy of the medium and for
arbitrary ellipticity of the inclusion it is not generally possible to obtain the results in an
analytic form. So far the closed-form solutions for J tensors are obtained at most for a
spheroid placed coaxially in an elastic, transversely isotropic medium (Walpole, 1991b).

In this work we will carry out the integrations numerically in terms ofGaussian double
quadratures. Without loss in generality we suppose the principal ellipsoidal axes are aligned
with the Cartesian coordinate Xt. X2, X3' As described in Walpole (1991b), we may introduce
the following coordinate transformation:
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X j = a;(;, n; = w(;/a;, (no sum on i),

(I =(1 (DI/ 2 cosw, (2 = (1-(DI /2 sinw,

w = [(I-(D(ai 2 cos2 w+a2 2sin 2 w)+a3 2(n- 1/2 ,

w dS = -ala2a3 d(3 dw,

at points of S, so as to transform the integral J;j in the form :

1 II 12

"Jb= ~4 d(3 kij(n)w2dw.
1t - I 0

899

(38)

(39)

Other terms J1, Jt and J4 can be expressed in an analogous way. Alternatively, the
integrals (31) can be parameterized on the surface of a unit sphere following a coordinate
transformation described as:

Xi = aln;/w, (no sum on i),

n I = (1- ~2) 1/2 cos 1], n2 = (1- ~2) 1/2 sin 1], n3 = ~,

w = [(1- ~2)(aT cos 2 1] +a~ sin 2 1]) +a~~2] 1/ 2,

w4 dS = aTa~a~ d~ d1],

at points of S, and consequently arrive at the double integration:

(40)

(41)

(42)

for Jij, and similarly for J1 and others. Equations (39) and (41) can be numerically
integrated using Gaussian double quadratures (see for example, Press et a/., 1989). In
particular, eqn (41) can be approximated as:

I a\a2a3 ~ ~ [kij(n) ]
Jij ~ -4- L. L. w(n) Wpq(~p, 1]q) ,

1t p= 1 q= 1

where ni = ni(~p, 1]q), M and N refer to the Gaussian points used for the integration over ~

and 1], respectively, and Wpq are the Gaussian weights. The constants M and N can be
arbitrarily selected depending on the aspect ratio of the ellipsoid, material constants and
the desired accuracy. The symmetric tensor J in (32) may be conveniently expressed in a
(4 x 4) matrix, and hence the T tensor (35), which involves the inverse of J, could be
calculated without difficulty. It should be mentioned that from dimensional considerations
the T tensor has the unit of (length x modulus).

To check the validity of our procedures, we have compared our numerical results with
existing analytic solutions for purely elastic cases. Table 1 lists the nondimensionalized

Table 1. Translational stiffness for various aspect ratios
(isotropic, v = 0.25)

a3!aj Tll!(na, Jl) TJJ!(na,Jl) M N

O.oI 3.079 3.831 260 8
0.1 3.285 3.944 36 8
0.2 3.509 4.074 18 8
0.4 3.941 4.339 10 8
0.6 4.355 4.608 8 8
0.8 4.755 4.876 4 8
1.0 5.142 5.142 2 8
2.0 6.947 6.424 10 8
4.0 10.15 8.777 20 8
8.0 15.82 12.97 28 8

10.0 18.44 14.91 36 8
100.0 108.1 80.55 450 8
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Table 2. Translational stiffness for various aspect ratios (eclo-
gite, transversely isotropic)

a3/a , T, J!(na 1L 44 ) T33/(na 1L ••) M N

0.01 3.033 4.236 200 8
0.1 3.233 4.352 38 8
0.2 3.450 4.484 20 8
0.4 3.867 4.755 12 8
0.6 4.266 5.029 8 8
0.8 4.651 5.302 6 8
1.0 5.025 5.572 6 8
2.0 6.761 6.876 10 8
4.0 9.851 9.275 24 8
8.0 15.30 13.56 32 8

10.0 17.81 15.54 42 8
100.0 103.9 82.42 420 8

Table 3. Elastic constants of eclogite (GPa)

171 60 59 208 58.5

Table 4. Material constants

GaAs PZT-·6B

Elastic constants (x 10'0 N m - 2) L" 11.81 16.8
L 33 11.81 16.3
L •• 5.94 2.71
L l2 5.32 6.0
L I3 5.32 6.0

Piezoelectric constants (C m - 2) e 1• -0.16
el5 4.6
e31 -0.9
e33 7.1

Dielectric constants (x 10- 10 F m-') K ll 1.l08 36
K33 1.l08 34

Table 5. Translational stiffness for various aspect ratios (GaAs)

a3/al T:,/(na1L••) Tl3/(na,L•• ) M N

0.01 2.534 2.844 180 24
0.1 2.676 2.939 30 24
0.2 2.832 3.050 18 24
0.4 3.138 3.284 12 24
0.6 3.437 3.525 10 24
0.8 3.727 3.768 10 24
1.0 4.011 4.011 8 22
2.0 5.342 5.191 10 22
4.0 7.725 7.369 18 24
6.0 9.893 9.374 28 24
8.0 11.92 11.26 38 26

10.0 13.87 13.06 40 26
100.0 80.21 74.73 390 26

translation tensor Tij/(nat IJ.) vs the aspect ratio of the spheroid in an isotropic medium. The
numbers M and N are the integration points necessary to achieve accuracy offour significant
digits of the exact solutions (Walpole, 1991b, eqn 32). Similar results are given in Table 2
for a transversely isotropic solid---eclogite; its mechanical properties are listed in Table 3
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Table 6. Translational stiffness for various aspect ratios (PZT-
6B)

a3/a, T: I!(na,L..) T;3/(na,L 44 ) M N

0.01 4.445 5.620 280 8
0.1 4.868 5.733 34 8
0.2 5.317 5.866 22 8
0.4 6.169 6.144 12 8
0.6 6.973 6.427 10 8
0.8 7.742 6.711 10 8
1.0 8.484 6.994 10 8
2.0 11.90 8.364 12 8
4.0 17.96 10.90 16 8
6.0 23.47 13.24 24 8
8.0 28.65 15.45 32 8

10.0 33.60 17.56 44 8
100.0 204.8 88.25 380 8
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(Zureick and Choi, 1989). We have correctly checked with the exact analytic solutions T;j

given by Walpole (1991b) for a spheroidal inclusion in a transversely isotropic material.
Finally, we present results in Tables 5 and 6 and in Figs 1 and 2 for two piezoelectric solids,
gallium arsenide and PZT-6B. The material constants are recorded in Table 4 (Wang, 1992;
Minagawa, 1992), in which the symmetry of the former corresponds to that of the cubic
system of classes 23 and 43, and the latter belongs to the hexagonal crystal of class 6 mm
(Nye, 1957). The numbers M and N indicated are the necessary Gaussian points to achieve
convergence for four significant digits. The computation time, depending on the number of
station points, is within the range of seconds to few minutes on an IBM compatible 486
personal computer. This numerical approach permits efficient evaluations of the translation
tensor for arbitrary anisotropy ofthe medium and for arbitrary aspect ratio of the ellipsoidal
inclusion.
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